

АКЦИОНЕРНОЕ ОБЩЕСТВО «НАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС «ВИП»

ИНН 6662058814

Юридический адрес: Российская Федерация, 620142, г. Екатеринбург, ул. Щорса, стр. 7 Почтовый адрес: Российская Федерация, 620142, г. Екатеринбург, ул. ул. Щорса, стр. 7 http://www.npkvip.ru E-mail: info@npkvip.ru Тел./факс: (343) 302-03-63, 302-03-53

ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ ИЗМЕРИТЕЛЬНЫЙ СДВ с интерфейсом CAN

Руководство по эксплуатации

АГБР.406239.001-07РЭ

Содержание

1	ОΠ	ИСАНИЕ И РАБОТА
1	.1	Назначение
1	.2	Технические характеристики
1	.3	Комплектность преобразователей
1	.4	Устройство и работа преобразователей
1	.5	Маркировка
1	.6	Упаковка
2	ИС	ПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ9
2	2.1	Эксплуатационные ограничения
2	2.2	Подготовка преобразователей к использованию
2	2.3	Эксплуатация преобразователей 14
2	4	Методика измерений
3	TE	ХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ15
4	TEI	КУЩИЙ РЕМОНТ15
5	XP	АНЕНИЕ
6	TPA	АНСПОРТИРОВАНИЕ16
7	УТ	ИЛИЗАЦИЯ16
8	ΓΑ	РАНТИИ ИЗГОТОВИТЕЛЯ16
Пр	ило	жение А Условное обозначение преобразователей давления измерительных 17
Пр	ило	жение Б Габаритные чертежи СДВ
Пр	ило	жение В Схема подключения преобразователей СДВ общепромышленного
ис	полн	ления
Пр	ило	жение Г Рекомендуемая схема внешних электрических соединений СДВ 29
Пр	ило	жение Д Габаритные размеры штуцеров для подключения к магистрали
даі	влен	ия и монтажных гнёзд
Пп	ило	жение E Описание протокола CAN Open

Настоящее руководство по эксплуатации распространяется на преобразователи давления измерительные СДВ с цифровым выходным сигналом формата САN различных конструктивных исполнений (в дальнейшем — преобразователи), содержит сведения об устройстве и принципе работы преобразователей, технические характеристики и другие сведения, необходимые для правильной эксплуатации (использования, хранения и технического обслуживания) преобразователей.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

1.1.1 Преобразователи предназначены для непрерывного измерения и преобразования давления абсолютного, избыточного, разрежения, давления-разрежения, разности давлений и гидростатического давления нейтральных и агрессивных, газообразных и жидких сред в цифровой сигнал на базе интерфейса CAN.

Область применения: метрологические службы, аккредитованные на право поверки и калибровки средств измерения давления, системы автоматического контроля, регулирования и управления технологическими процессами на предприятиях газовой, металлургической, химической, пищевой отраслях промышленности.

- 1.1.2 Преобразователи относятся к изделиям ГСП (Государственная система промышленных приборов и средств автоматизации).
- 1.1.3 Преобразователи относятся к изделиям одноканальным, однофункциональным, восстанавливаемым и ремонтируемым только в условиях предприятия-изготовителя.
- 1.1.4 Конструкция и покрытие преобразователей обеспечивают устойчивость к маслам и моющим веществам.
- 1.1.5 Преобразователи предназначены для работы при атмосферном давлении от 66,0 до 106,7 кПа (от 498 до 800 мм рт.ст.) и соответствуют группе исполнения Р1 по ГОСТ Р 52931.
- 1.1.6 Преобразователи выполняются как в однопредельном, так и в многопредельном исполнении. Для многопредельного исполнения существует возможность задания до трёх пределов измерения, благодаря чему преобразователи поддерживают высокую точность измерения в широком диапазоне входных давлений.
- 1.1.7 Преобразователи не содержат материалов и веществ, вредных в экологическом отношении для человека и окружающей среды, поэтому при эксплуатации (применении), испытаниях, хранении, транспортировании и утилизации не оказывают воздействия, опасного в экологическом отношении.
- 1.1.8 Предприятие-изготовитель оставляет за собой право на изменение конструкции преобразователей СДВ и типов комплектующих изделий без ухудшения его характеристик.
- 1.1.9 Структурная схема условного обозначения преобразователей давления измерительных приведена в приложении А.

1.2 Технические характеристики

- 1.2.1 Основные технические характеристики приведены в паспорте (этикетке) на конкретный преобразователь.
- 1.2.2 Погрешность определения температуры измеряемой среды не превышает 3 °C.
- 1.2.3 Преобразователи устойчивы к воздействию испытательного давления в соответствии с таблицей 1 и выдерживают перегрузку испытательным давлением в течение 15 минут.

Преобразователи разности давлений — прочные и герметичные после воздействия предельно-допустимого рабочего избыточного давления длительностью не более 1 минуты с соответствии с таблицей 2.

Преобразователи избыточного давления с коррозионностойкой открытой мембраной - прочные и герметичные после воздействия предельно-допустимого перегрузочного давления длительностью не более 1 минуты с соответствии с таблицей 3.

Таблица 1 — Величины испытательного давления преобразователей

	Испытательное давление, в % от ВПИ	Примечание
От 0,01 до 16 включ.	125	_
Св. 16 ->> 60,0 ->>	115	
>> 60,0 >> 100,0 >>	110	_

Примечания

Т а б л и ц а 2 — Величины предельно-допустимого перегрузочного давления для преобразователей разности давления

	Предельно-допустимое рабочее избыточное давление, МПа	Примечание
От 0,25 кПа до 1,6 кПа включ.	4	_
Св. 1,6 кПа	10	
>> 10,0 кПа → 1,6 МПа →	25	

¹ Для преобразователей давления-разрежения верхний предел измерения принимается по избыточному давлению.

² Для преобразователей абсолютного давления с верхним пределом ниже 100 кПа испытательное давление равно атмосферному.

Таблица 3 — Величины предельно-допустимого перегрузочного давления для преобразователей избыточного давления с коррозионностойкой открытой мембраной

Верхні МПа	ие п	ределы	измер	. , , , , ,	Предельно-допустимое	Примечание
IVIIIa					перегрузочное давление, МПа	
От	0,01	до	0,06	включ.	0,1	
Св.	0,06	>>	0,25	>>	0,8	
>>	0,25	>>	1,0	>>	4,0	
>>	1,00	>>	2,5	>>	7,5	
>>	2,50	>>	6,0	>>	18,0	
>>	6,00	>>	16,0	>>	70,0	
>>	16,0	0 ->>	100,0	>>	110,0	

1.2.4 Номинальная статическая характеристика преобразователя линейная, соответствует виду:

$$S = S_0 + \frac{k \cdot P}{P_{\rm B} - P_{\rm H}},$$

где S — текущее значение сигнала;

 S_0 — смещение сигнала при нулевом значении измеряемой величины (для стандартных условий $S_0 = 0$);

P — значение измеряемой величины;

 $P_{\rm B}$ — верхний предел измерений;

 $P_{\rm H}$ — нижний предел измерений, (для стандартных условий $P_{\rm H}=0$ для всех преобразователей, кроме ИВ, для которых $P_{\rm H}$ в формулу подставляется со знаком «минус»;

k — коэффициент преобразования измеряемой величины:

- $-\ k=100\ \%$ для выходного сигнала, выражаемого в процентах от диапазона измерений,
- $-k = (P_B P_H)$ для выходного сигнала, представляющего собой размерную величину (кПа, Па, МПа и т.д.).
- 1.2.5Вариация выходного сигнала не должна превышать половины пределов допускаемой основной погрешности, кроме преобразователей с пределами допускаемой основной погрешности 0,1 %, у которых вариация не должна превышать 75 % пределов допускаемой основной погрешности.
- 1.2.6Пределы допускаемой дополнительной погрешности преобразователей разности давления при двухстороннем нагружении рабочим избыточным давлением должны быть, % от ВПИ:

с ВПИ до 1,6 кПа включительно $\pm 0,2\%$;

с ВПИ свыше 1,6 кПа до 10 кПа включительно $\pm 0,1\%$;

с ВПИ свыше 10 кПа $\pm 0,025\%$.

- 1.2.7 Дополнительная погрешность, % от ВПИ, вызванная воздействием внешнего переменного магнитного поля напряжённостью 400 А/м, частотой 50 Гц или внешнего постоянного магнитного поля напряжённостью 400 А/м, не превышает 20 % от дополнительной основной погрешности и не нормируется.
- 1.2.8 По устойчивости к механическим воздействиям преобразователи являются виброустойчивыми и соответствуют:
- по ГОСТ Р 52931 конструктивные исполнения К00, К02, К04, К05 соответствуют классификационной группе G2 и воздействию многократных механических ударов при пиковом значении ударного ускорения 98 м/с 2 (10g) и длительности 2–50 мс, преобразователи остальных конструктивных исполнений соответствует группе V3;
 - по ОСТ 32.146 группе ММ1.
- 1.2.9 По устойчивости к климатическим воздействиям преобразователи в зависимости от вида исполнения соответствуют:
 - по ГОСТ 15150 группам УХЛЗ.1, У2, Т3, ТВ2, ТВ4, УХЛ4.2, ОМ4, OM5;
 - по ОСТ 32.146 группам К6, К7.
- 1.2.10По устойчивости и прочности к воздействию температур окружающей среды и влажности преобразователи относятся к группам С1, С4, В4 по ГОСТ Р 52931.
 - 1.2.11Среднее время наработки на отказ не более 182000 часов.
- 1.2.12 Средний срок службы преобразователей не менее 14 лет, кроме эксплуатируемых при измерении параметров агрессивных сред, средний срок службы которых зависит от свойств агрессивной среды и условий эксплуатации.
- 1.2.13 Изоляция электрических цепей преобразователей выдерживает испытательное напряжение в соответствии с таблицей 4.
- 1.2.14 Сопротивление изоляции электрических преобразователей в нормальных условиях, при верхнем значении предельной рабочей температуре, при относительной влажности 95 ± 3 % и температуре 35 ± 5 °C приведено в таблице 4.

Таблица 4 — Вид и значение испытательного напряжения при проверке электрической прочности изоляции, электрическое сопротивление изоляции

Действующее	значение				
практически син	напряжения ка чистотой 50 Гц усоидальной формы с амплитуды не хуже $_{\phi}$, не менее	Нормы электрического сопротивления изоляции, МОм, не менее			
в нормальных условиях	при относительной влажности 95 ± 3 % и температуре 35 ± 5 °C	в нормальных условиях	при верхнем значении предельной рабочей температуре	при относительной влажности 95 ± 3 % и температуре 35 ± 5 °C	
300	240	100	20	5	

- 1.2.15 Преобразователи не выходят из строя при обрыве линии связи, при кратковременном (не более 10 с) коротком замыкании линии связи.
- 1.2.16 Преобразователи не выходят из строя при подаче напряжения питания обратной полярности.

1.2.17 ПО преобразователя предназначено для приема электрического сигнала чувствительного элемента, пропорционального его деформации от приложенного давления.

Значение цифрового кода сигнала, нормированное в широком диапазоне температур, преобразуется в значение давления.

ПО идентифицируется путем вывода наименования и номера версии на дисплее индикатора (индикатора-коммуникатора), либо в соответствующих регистрах по цифровому протоколу связи.

ПО встроенное и неизменяемое пользователем.

Реализована системная блокировка чтения встроенной памяти через отладочный интерфейс. Для доступа к калибровочным данным необходимо пройти двухстадийную проверку пароля.

В пользовательском и связном интерфейсах преобразователя отсутствуют процедуры архивирования результатов измерений.

ПО преобразователя разделено на метрологически значимую часть и метрологически незначимую часть:

к метрологически значимой части относятся программные модули, выполняющие функции:

- сбора, передачи, обработки и представления измерительной информации;
- идентификации метрологически значимой части ПО;

к метрологически незначимой части относятся программные модули меню прибора:

- формат отображения данных на индикаторе;
- структуры коммуникационного протокола.

Метрологически значимая часть ПО преобразователя имеет возможность проведения идентификации посредством интерфейса связи, или визуально на светодиодном индикаторе в меню прибора.

Идентификационные данные, представленные в таблице 5, включают в себя информацию:

– о номере версии ПО - идентификаторе метрологически значимой части ПО.

- Таблица 5 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО для СДВ	pd_CAN.hex
Номер версии (идентификационный номер) ПО	не ниже V1
Цифровой идентификатор ПО	-

На индикаторном устройстве имеется пароль.

Имеется разграничение пользовательского доступа. Пользователи не имеют доступа в сервисный режим.

Протоколы обмена данных содержат методы определения ошибок при помощи проверки соответствия запроса и ответа и вычисления контрольной суммы.

Расчет контрольных сумм производится алгоритмом CRC-16

Уровень защиты программного обеспечения вычислителя от непреднамеренных и преднамеренных изменений - «высокий» по Р 50.2.077-2014.

1.2.18 Корпус преобразователей изготавливают из нержавеющей коррозионностойкой стали, окрашиваемой в цвета, которые определяет изготовитель.

Заводской номер имеет цифровой формат и наносится на боковой панели преобразователя методом гравировки, износостойкой наклейки или иным пригодным способом, обеспечивающим идентификацию каждого экземпляра преобразователя, возможность прочтения и сохранность номера в процессе эксплуатации.

Нанесение знака поверки на средство измерений не предусмотрено. Знак поверки наносится на свидетельство о поверке.

Для защиты от несанкционированного доступа предусмотрена установка разрушаемой пломбы изготовителя. Конструкция обеспечивает ограничение доступа к частям преобразователя, несущим первичную измерительную информацию, и местам настройки (регулировки).

1.3 Комплектность преобразователей

1.3.1 Комплектность преобразователей приведена в таблице 6.

Таблица 6 — Комплектность преобразователей

Наименование	Обозначение	Кол., шт	Примечание	
1 Преобразователь давления измерительный (обозначение в соответствии с исполнением)	-	1	Исполнение в соответствие с заказом	
2 Паспорт (этикетка)	-	1		
3 Методика поверки	-		По требованию или	
4 Руководство по эксплуатации	АГБР.406239.001-07РЭ		в электронном виде	
TT				

Примечания

1.4 Устройство и работа преобразователей

- 1.4.1 Принцип действия преобразователей основан на преобразовании давления измеряемой среды, воздействующей на мембрану чувствительного элемента, в электрический сигнал, пропорциональный механической деформации мембраны.
- 1.4.2 Чувствительный элемент расположен в корпусе из нержавеющей стали. Для присоединения к магистрали давления на корпусе имеется резьбовой штуцер с гайкой. На крышке корпуса размещён разъём для подачи питания на датчик и подключения его к линии связи.
- 1.4.3 Сигнал чувствительного элемента поступает на вход АЦП и преобразуется в цифровую форму. Частота преобразователей АЦП может быть изменена пользователем с учётом скорости изменения давления измеряемой среды: при квазистатических процессах рекомендуется выбирать минимальную частоту преобразования для уменьшения собственных шумов АЦП и повышения точности измерений и, наоборот, для процессов с большими скоростями изменения давления следует повышать частоту преобразования.
- 1.4.4 Цифровой сигнал АЦП считывается микроконтроллером, корректируется с учётом настроечных коэффициентов, устраняющих нелинейности и температурные зависимости первичного преобразователя давления, преобразуется в значение давления и выдаётся по запросу в линию связи.

¹ Розетка GDM3009 DIN 43650A поставляется с преобразователями, имеющими тип соединителя DIN 43650A

1.4.5 Микроконтроллер может выполнить операции по усреднению (демпфированию) выходного сигнала с числом шагов, задаваемых пользователем, что при медленно меняющемся давлении позволяет повысить точность получаемого результата. При этом кратковременные скачки давления будут сглажены.

1.5 Маркировка

- 1.5.1 На крышке преобразователей маркируются надписи в соответствии с КД:
- товарный знак или наименование предприятия-изготовителя;
- конструктивное исполнение;
- заводской номер преобразователей;
- дата изготовления (месяц, год).
- 1.5.2 Единый знак обращения TP TC и знак утверждения типа наносятся изготовителем на титульный лист паспорта (этикетки) типографским способом.
- 1.5.3 Оттиск клейма ОТК изготовителя и знак поверки ставятся в соответствующие разделы паспорта (этикетки).

1.6 Упаковка

- 1.6.1 Упаковка преобразователей обеспечивает сохранность преобразователей при хранении и транспортировании.
- 1.6.2 При упаковке входное отверстие камеры измерительного блока и контакты соединителя электрического закрыты (если это предусмотрено в договоре поставки) защитными крышками, предохраняющими от загрязнения внутреннюю полость чувствительного элемента и контакты соединителя электрического, а так же от механических повреждений резьбу присоединительного штуцера и резьбу соединителя.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

2.1.1 Не допускается применение преобразователей для измерения давления сред, агрессивных по отношению к материалам конструкции преобразователей, контактирующим с измеряемой средой.

- 2.1.2 Преобразователи, используемые для преобразования избыточного давления газообразного кислорода и кислородосодержащих газовых смесей, запрещается применять во взрывоопасных условиях.
- 2.1.3 Не допускается механическое воздействие на мембрану приемника давления со стороны полости измерительного блока.
 - 2.1.4 При эксплуатации преобразователей необходимо исключить:
- накопление и замерзание конденсата в рабочих камерах и внутри соединительных трубопроводов (для газообразных средств);
- замерзание, кристаллизацию среды или выкристаллизовывание из неё отдельных компонентов (для жидких сред).
- 2.1.5 Электропитание преобразователей должно осуществляться от стабилизированного источника напряжения постоянного тока. Источник питания, используемый для питания в эксплуатационных условиях преобразователей общепромышленного исполнения, должен удовлетворять следующим требованиям:
 - сопротивление изоляции не менее 100 МОм;
- выдерживать испытательное напряжение 1,5 кВ при проверке электрической прочности изоляции;
- пульсация (двойная амплитуда) выходного напряжения не должна превышать 2 % от номинального значения выходного напряжения при частоте гармонических составляющих, не превышающей 500 Γ ц.
- источник питания (канал источника питания, непосредственно питающий преобразователи) должен быть рассчитан или установлен на ограничение выходного мощности уровнем, близким к двойному значению потребляемой мощности преобразователей, указанной в паспорте (этикетке), но не более 150 В·А при любой нагрузке, включая короткое замыкание.

2.2 Подготовка преобразователей к использованию

- 2.2.1 При получении преобразователей необходимо осмотреть упаковку и, убедившись, что она не имеет повреждений, произвести распаковку.
 - 2.2.2 Проверить комплектность преобразователей в соответствии с 1.3
- 2.2.3 Внешним осмотром следует проверить преобразователи и резьбовые соединения на отсутствие видимых повреждений
- 2.2.4 После транспортирования в условиях отрицательных температур окружающей среды первое подключение преобразователей к источнику электропитания допускается после выдержки преобразователей не менее 3 часов в нормальных условиях по ГОСТ 15150.
- 2.2.5 Проверить мегомметром номинальным 500 c напряжением сопротивление электрической изоляции между корпусом преобразователей и электрически замкнутыми между собой выводами соединителя электрического. Отсчёт показаний, определяющих электрическое сопротивление производить после приложения напряжения к испытуемым цепям преобразователей и установления показаний мегомметра. Проверку проводить в нормальных условиях. если сопротивление электрической изоляции менее преобразователи следует заменить.

- 2.2.6 Приёмник давления преобразователей и монтажные части, предназначенные для преобразования давления газообразного кислорода и кислородосодержащих смесей, должны быть очищены и обезжирены по РД 92-0254.
- 2.2.7 При монтаже преобразователей на объекте (вводе в эксплуатацию) необходимо руководствоваться настоящим РЭ, главой 3.4 ПЭЭП, главой 7.3 ПУЭ, а также:
- габаритным чертежом преобразователей и вариантом установки (приложения Б и Γ);
- другими документами, действующими на предприятии, регламентирующими использование средств измерения давления.
- 2.2.8 Положение преобразователей при монтаже произвольное, удобное для монтажа, демонтажа и обслуживания. Монтаж преобразователей с ВПИ до 100 кПа и с открытой мембраной (имеющих сильную зависимость выходного сигнала от положения преобразователя) с целью сохранения метрологических характеристик предпочтительно устанавливать вертикально штуцером вниз (в таком положении они калибруются на предприятии-изготовителе).
- 2.2.9 Следует избегать повреждений присоединительной резьбы и перекоса преобразователей при установке и затягивании, а также при откручивании преобразователей.
- 2.2.10 Запрещается при монтаже и демонтаже прикладывать усилие затягивания (откручивания) к крышке корпуса, а также к соединителю.
- 2.2.11 При монтаже преобразователей усилие затягивания, прикладываемого к гайке корпуса, не должно превышать:
 - 26 H·м для исполнений СДВ со штуцером M12×1,0;
 - 60 H·м для исполнений СДВ со штуцером M20×1,5.
- 2.2.12 Для исполнений СДВ со штуцером M12×1,0 рекомендуется устанавливать (приложение Б) уплотняющую резиновую прокладку толщиной 5–6 мм между гайкой корпуса и рабочей магистралью (соединительной линией, передающей давление). Не допускается упор гайки корпуса в металлическую часть соединения с внешней газовой или гидравлической линией (рабочей магистралью, соединительной линией, передающей давление).
- 2.2.13 Для исполнение СДВ со штуцером M20×1,5 уплотнение для соединения типа 3 исполнение 1 по ГОСТ 25164 рекомендуется выполнять с помощью прокладки.

Запрещается использовать уплотнение по резьбе (пакля, лента ФУМ) для обеспечения герметичности соединения, так как может произойти повреждение мембраны большим давлением, возникающим при закручивании преобразователя в замкнутый объём несжимаемой жидкости.

Монтаж преобразователя на рабочее место осуществляется гаечным ключом за шестигранник штуцера.

Запрещается использовать корпус преобразователя в качестве элемента монтажа или крепления. При монтаже запрещается прикладывать усилия к корпусу датчика, в том числе с помощью трубного ключа, во избежание его повреждения.

2.2.14 При монтаже преобразователей следует учитывать следующие рекомендации:

- окружающая среда не должна содержать примесей, вызывающих коррозию деталей преобразователей;
- в случае установки преобразователей непосредственно на технологическом оборудовании и трубопроводов должны применяться отборные устройства с вентилями для обеспечения возможности отключения и проверки преобразователей;
- размещать отборные устройства рекомендуется в местах, где скорость движения рабочей среды наименьшая, поток без завихрений, т.е. на прямолинейных участках трубопроводов при максимальном расстоянии от запорных устройств, колен, компенсаторов и других гидравлических соединений;
- при пульсирующем давлении рабочей среды, гидроударах отборные устройства должны быть с отводами в виде петлеобразных успокоителей;
- при температуре среды свыше 80 °C отборные устройства должны быть с отводами в виде соединительных линий, не позволяющих повысить температуру рабочей среды в приёмнике давления преобразователей или окружающей среды возле преобразователей свыше 80 °C;
- соединительные линии (рекомендуемая длина не более 15 метров) должны иметь односторонний уклон (не менее 1:10) от места отбора давления вверх, к преобразователям, если измеряемая среда газ, и вниз, к преобразователям, если измеряемая среда жидкость. В случае невозможности выполнения этих требований при измерении давления газа в нижней точке соединительной линии необходимо предусмотреть отстойные сосуды, а в наивысших точках соединительной линии, при измерении давления жидкости, газосборники;
- при использовании соединительных линий в них должны предусматриваться специальные заглушаемые отверстия для продувки (слива конденсата);
- соединительные линии (импульсные трубки) необходимо прокладывать так, чтобы исключить образование газовых мешков (при измерении давления жидкости) или гидравлических пробок (при измерении давления газа);
- в случае эксплуатации преобразователей при температурах рабочей (окружающей) среды ниже 0 °С необходимо исключить накопление и замерзание конденсата в измерительной камере (приёмнике давления) преобразователя и внутри соединительных трубок (при измерении давления газа), замерзание и кристаллизацию среды (при измерении давления жидкости);
- при измерении давления агрессивных или кристаллизующихся, а также загрязнённых сред отборные устройства давления должны иметь разделительные сосуды или мембраны. Разделительные сосуды должны устанавливаться как можно ближе к точке отбора давления;
- магистрали (соединительные линии) должны быть перед присоединением преобразователей тщательно продуты для уменьшения возможности загрязнения полости приёмника давления преобразователей;
- после присоединения преобразователей следует проверить места соединений на герметичность давлением, равным верхнему пределу измерения преобразователей, или испытательным давлением (не превышающим величин, указанных в таблице 1, в течение 15 минут). Спад давления за 15 минут не должен превышать 5 % от подаваемого давления.
- 2.2.15 При монтаже преобразователей гидростатического давления следует учитывать следующие рекомендации:

- конец кабеля вывести в сухое пространство или в соответствующий соединительный блок с клеммами;
- опускать и поднимать преобразователь необходимо тросом, закрепленным за проушину на корпусе преобразователя;
 - конец кабеля закрепить в подходящей коробке с соединительными клеммами;
- не перегибать кабель (через него проходит капилляр для компенсации атмосферного давления).

Для подключения преобразователей гидростатического давления с кабелем рекомендуется использовать «Коробки клеммные» АГБР.440.00.00:

- КМ-1 4 линии с дополнительной защитой от перенапряжения ≤ 2 кВ , 2 линии без защиты с заземлением (металлический корпус);
- KM-2 4 линии без дополнительной защиты с заземлением (металлический корпус);
- KM-3 4 линии без дополнительной защиты с заземлением (пластиковый корпус).

Использование клеммных коробок обеспечивает удобство подключения кабелей преобразователей давления и защиту капиллярной трубки от внешних воздействий.

- 2.2.16 Подключение преобразователей к линии связи и источнику питания осуществляется кабелем с изоляцией и числом проводов, соответствующим числу проводников в линии связи. Рекомендуемое сечение проводов кабеля от 0,35 до 1,5 мм². Цепи питания и линию связи следует выполнять в виде витых пар, линию связи экранировать.
- 2.2.17 Изоляция кабеля (линии связи) должна обеспечивать степень защиты от проникновения пыли и влаги не ниже исполнения преобразователей (код степени защиты по ГОСТ 14254 указан в паспорте (этикетке).
- 2.2.18 Провод электрического соединения (заделку кабеля) следует выполнять таким образом, чтобы обеспечить степень защиты от проникновения пыли и влаги не ниже исполнения преобразователей.
- 2.2.19 Накидную гайку кабельной розетки следует заворачивать до достижения надёжного электрического контакта, при этом рекомендуемая величина момента на накидной гайке кабельной розетки не должна превышать 10 Н·м.
 - 2.2.20 Схемы подключения приведены в приложении В.
- 2.2.21 Контроль выходного сигнала и установка параметров осуществляется по линии связи в соответствии с протоколом обмена (приложение Е).
- 2.2.22 Если при проверке преобразователей в качестве рабочей среды использовалась жидкость (масло), то перед эксплуатацией следует при необходимости промыть и просушить приёмник давления преобразователей.
- 2.2.23 Рекомендуемая схема внешних электрических соединений при установке на объекте приведена в приложении Г.
- 2.2.24 Рекомендуемые монтажные гнёзда для установки преобразователей приведены в приложении Д.
- 2.2.25 Чтобы обеспечивалось выполнение требований пылевлагозащиты по IP65 соединения по DIN43650, необходимо установить уплотнительную прокладку на соединитель преобразователя, через которую произвести стыковку, предварительно убедившись в совпадении контактов, а затем плотно притянуть винтом.

2.3 Эксплуатация преобразователей

- 2.3.1 При эксплуатации преобразователи должны подвергаться периодическим осмотрам. При осмотре необходимо проверить:
 - прочность и герметичность линий подвода давления;
 - надёжность монтажа (крепления) преобразователей;
- отсутствие обрывов или повреждения изоляции соединительных электрических линий;
 - надёжность подключения кабелей;
 - отсутствие загрязнений на контактах электрических соединителей;
 - сохранность маркировки;
 - отсутствие вмятин, видимых механических повреждений.

Эксплуатация преобразователей с нарушением указанных требований запрещается.

2.3.2 Характерные неисправности и методы их устранения приведены в таблице 7.

Т а б л и ц а 7 — Характерные неисправности СДВ и методы их устранения

Неисправность	Причина	Метод устранения
1 Выходной сигнал	Обрыв в линии или в цепи питания	Найти и устранить обрыв
отсутствует	Короткое замыкание в линии или в цепи питания	Найти и устранить замыкание
	Нарушена герметичность в линии подвода давления	Найти и устранить негерметичность
2 Выходной сигнал	Окислены контактные поверхности	Отключить питание. Освободить доступ к контактным поверхностям. Очистить контакты
нестабилен	Низкое напряжение питания	Проверьте и, если нужно, отрегулируйте
	Неисправность в блоке электроники	Возвратите преобразователь для замены или ремонта

- 2.3.3 Осмотр и устранение замеченных недостатков должны производиться при отсутствии давления в газовой или гидравлической линии, при отключенном электропитании и отсоединённой соединительной электрической линии связи.
- 2.3.4 В случае накопления конденсата в соединительной линии (полости измерительного блока) и невозможности слива конденсата без демонтажа преобразователей необходимо демонтировать преобразователи, и слить конденсат, после чего вновь произвести монтаж преобразователей. Демонтаж и монтаж преобразователей следует производить с соблюдением требований раздела 2 настоящего документа.

2.4 Методика измерений

- 2.4.1 Для проведения измерений используются типовые схемы включения, приведенные в приложении В.
 - 2.4.2 Вычисление измеряемого давления производится по формуле п.1.2.4.

2.4.3 Значение измеренного давления в установленных единицах может быть считано по каналу связи, а при наличии индикаторного устройства – с индикатора преобразователя.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 При выпуске с предприятия-изготовителя преобразователи настраиваются на верхний предел измерения избыточного давления, при этом нижний предел измерения избыточного давления равен нулю.
 - 3.2 Интервал между поверками 5 (пять) лет.
- 3.3 Метрологические характеристики преобразователей в течение интервала между поверками соответствуют документам о поверке с учётом показателей безотказности преобразователей и при условии соблюдения потребителем правил хранения, транспортирования и эксплуатации, указанных в настоящем руководстве по эксплуатации.
- 3.4 Периодическая поверка преобразователей осуществляется в соответствии с документом: «ГСИ. Преобразователи давления измерительные СДВ. Методика поверки» МП 110-221-2022, утвержденным в установленном порядке.
 - 3.5 Меры безопасности
- 3.5.1 По способу защиты человека от поражения электрическим током преобразователи СДВ относятся к классу «III» по ГОСТ 12.2.007.0.
- 3.5.2 К работе с преобразователями допускаются лица, прошедшие соответствующий инструктаж по технике безопасности.
- 3.5.3 Замену, присоединение и отсоединение преобразователей от магистралей, подводящих давление, следует производить при отсутствии давления в магистралях и отключённом электрическом питании.

4 ТЕКУЩИЙ РЕМОНТ

- 4.1 Преобразователи, для которых выявлено несоответствие техническим характеристикам, указанным в 1.2 при проведении входного контроля или при эксплуатации, направляются на предприятие-изготовитель.
- 4.2 Запрещается вне предприятия-изготовителя разбирать преобразователи, проводить доработку монтажа, а также производить замену электронных компонентов, чувствительного элемента и ремонт преобразователей.

5 ХРАНЕНИЕ

- 5.1 Хранение преобразователей должно осуществляться в упакованном виде в закрытых помещениях (хранилищах).
 - 5.2 Допускаются следующие условия хранения:
 - температура воздуха от минус 50 до плюс 50 °C;
 - относительная влажность воздуха до 98 % при температуре до 25 °C;
 - воздух в помещении для хранения не должен содержать паров кислот, щелочей и других химических агрессивных смесей;

- условия хранения преобразователей без упаковки «1» по ГОСТ 15150.
- 5.3 Срок хранения (консервации) преобразователей включается в интервал между поверками.

6 ТРАНСПОРТИРОВАНИЕ

- 6.1 Транспортирование в части воздействия климатических факторов внешней среды должно соответствовать группе 4 (Ж2) ГОСТ 15150, а в части воздействия механических факторов должно соответствовать условиям Л ГОСТ 23216.
- 6.2 Транспортирование должно производиться в упаковке предприятияизготовителя. Допускается транспортировать преобразователи всеми видами наземного и водного транспорта на любые расстояния с соблюдением правил, утверждённых соответствующими транспортными ведомствами.

7 УТИЛИЗАЦИЯ

7.1 Утилизация преобразователей производится в порядке, установленном на предприятии-потребителе.

8 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 8.1 Поставщик (изготовитель) гарантирует соответствие преобразователей требованиям технических условий при соблюдении потребителем условий эксплуатации (применения), транспортирования, хранения, монтажа и эксплуатации, установленных в настоящем РЭ.
- 8.2 Гарантированный срок эксплуатации преобразователей 3 (три) года с момента (даты) приёмки преобразователя, указанного в паспорте (этикетке).
- 8.3 Гарантийный срок эксплуатации преобразователей для аппаратуры железнодорожной автоматики, телемеханики и связи (ЖАТС) 5 (пять) лет с момента (даты) приёмки преобразователя, указанного в паспорте (этикетке).
- 8.4 Гарантия не распространяется на преобразователи, подвергшиеся любым посторонним вмешательствам в конструкцию преобразователей или имеющих внешние повреждения.
- 8.5 Гарантия не распространяется на электрический соединитель, монтажные, уплотнительные, защитные и другие изделия, а также программное обеспечение, входящие в комплект поставки преобразователей.
- 8.6 Гарантийное обслуживание производится предприятием-изготовителем. Постгарантийный ремонт преобразователей производятся по отдельному договору.

Приложение А

Условное обозначение преобразователей давления измерительных Структурная схема условного обозначения преобразователей

	Обозначение										
Номер 103иции	1	2	3	4	5	6	7*	8**	9	10	11
Пример	СДВ-	1	И-	1,00-	M() -	CAN -	DXXXX-XXXX-XX	КХХ	LXX	-/XXX	АГБР.406239.001ТУ
*Девятую, десятую цифры допускается не указывать **К00 допускается не указывать											

Номер позиции в обозначении	Содержание
1	Наименование сокращенное — СДВ
2	код исполнения (таблица А.1),
3	вид измеряемого давления (таблица А.2)
4	верхний предел измеряемого давления (ВПИ), МПа — в соответствии с рядом по ГОСТ 22520 или в соответствии с заказом
5	Код специального исполнения: М() — для исполнения с перенастраиваемым диапазоном измерения «многопредельный», в скобках указывается значение ВПИ заводской настройки в МПа; МА — многопредельный с автоматическим переключением диапазонов (только для преобразователей с цифровым выходным сигналом). не указано — для преобразователей с фиксированными пределами измерения («однопредельный»). Р — исполнение преобразователей с вынесенным приёмником давления РХХ — исполнение с нестандартным значением предельно-допустимого перегрузочного давления (ХХ — значение давления в МПа) и повышенной надежностью.
6	код выходного сигнала и линии (таблица А.3)
7	код модели (буква и девять или десять цифр)
буква	вид электронного блока (таблица А.4)
первый символ	код климатического исполнения (таблица А.5)
второй символ	код предела допускаемой основной погрешности измерения (таблица А.6)
третья цифра	код предела дополнительной температурной погрешности (таблица А.7)
четвертый символ	код присоединительного размера (монтажной части) для соединения с внешней гидравлической (газовой) линией и заземлением (таблица А.8)
пятая цифра	код вида индикации выходного сигнала (таблица А.9)
6-я и 7-я цифры	код соединителя электрического для соединения с внешней линией связи (таблица А.10)
восьмая цифра	код группы пылевлагозащиты по ГОСТ 14254 (таблица А.11)
девятый символ	код диапазона напряжений питания (таблица А.12)
десятая цифра	код времени установки выходного сигнала (таблица А.13)
8	Код конструктивного исполнения. К00 допускается не указывать (таблица А.14) и признак дополнительной технологической приработки (H)
9	длина кабеля LXX (целое число кратное одному метру, не может превышать 300 м), указывается только для изделий с кабелем
10	Код информации о первичной поверке (таблица А.15)
11	

Т а б л и ц а А.1 — Код исполнения преобразователей. Допускается одновременное указание нескольких обозначений (разделение через дефис)

Обозначение (позиция)	Исполнение							
не указано	общепромышленное исполнение							
BT2	(невзрывозащищенное исполнение) исполнение, устойчивое к воздействию температуры рабочей (измеряемой) среды («высокотемпературное») от минус 50 до плюс 200 °C							
T01, T02, D50	Конструктивные исполнения по габаритно-присоединительным размерам преобразователей							

Таблица А.2 — Вид измеряемого давления

Обозначение	Вид измеряемого давления
A	преобразователи абсолютного давления
И	преобразователи избыточного давления
ИВ	преобразователи давления-разрежения
Γ	преобразователи гидростатического давления (уровень жидкости)
Д	преобразователи разности давлений
В	преобразователи разрежения

Таблица А.3 — Код выходного сигнала

Код	Выходной сигнал	Примечание
CAN	Цифровой, формат CAN	_

Таблица А.4 — Вид электронного блока

Обозначен	Вид электронного блока	
D	с цифровой обработкой сигнала	

Таблица А.5 — Код климатического исполнения

Код	Вид климатического исполнения и категория размещения	Предельные значения температуры окружающего воздуха при эксплуатации, °C
1		-10+50
2	УХЛ3.1	−50+50
3	5 A313.1	−50+80
6		-1+40
7	У2	−50+50
8	V 2	-50+80
9	T3, TB2, TB4	−25+70
A	УХЛ3.1	-20+80
В	УХЛ 4.2	+15+35
С	УХЛ3.1	-40+80
D	УХЛ3.1	-30+80

Таблица А.6 — Код предела допускаемой основной погрешности измерения

Код		Предел допускаемой основной погрешности измерения, $\pm \gamma$,%									
1		±0,1									
2		±0,15 ±0,25									
3											
4					±0,	,5					
5					±1,	,0					
6					±1,	,5					
	ВПИ max	-	±0,25		±0,5		±1		±1,5		
	4 кПа		4 кПа	2,5 кПа	1,6 кПа	1 кПа	0,6 кПа	0,4 кПа	0,25кПа	0,16 кПа	
	10 кПа		10 кПа	6 кПа	4 кПа	2,5 кПа	1,6 кПа	1 кПа	0,6 кПа	0,4 кПа	•
8	40 кПа	Ряд	40 кПа	25 кПа	16 кПа	10 кПа	6 кПа	4 кПа	2,5 кПа	1,6 кПа	
	250 кПа	ВПИ	250 кПа	160 кПа	100 кПа	60 кПа	40 кПа	25 кПа	16 кПа	10 кПа	
	1,6 МПа		1,6 МПа	1 МПа	0,6 МПа	0,4 МПа	0,25 МПа	0,16 МПа	0,1 МПа	0,06 МПа	
	16 МПа		16 МПа	10 МПа	6 МПа	4 МПа	2,5 МПа	1,6 МПа	1МПа	0,6 МПа	
С	±2,0										
D		±0,2									
Е		±0,4									

Т а б л и ц а А.7 — Код предела дополнительной температурной погрешности измерения

	Код	Предел дополнительной температурной погрешности измерения, %/(10 °C)				
ĺ	0	$\pm (0.05+0.05 \text{ Pmax/ PB})$ для $\text{Pmax/10} \le \text{PB} \le \text{Pmax2}$;				
	o	± (0,1+0,05 Pmax/ Pв) для Рв <pmax 10<="" td=""></pmax>				

Таблица А.8 — Код присоединительного размера (монтажной части) для соединения с внешней гидравлической (пневматической) линией и заземлением

Код	Присоединительные размеры				
1	Штуцер M12×1,0				
2	Штуцер M20×1,5 с ниппелем для соединения типа 3 исполнение 1 по ГОСТ 25164				
3	Штуцер M20×1,5 с ниппелем для соединения типа 3 исполнение 1 по ГОСТ 25164, с элементом заземления по ГОСТ 12.2.007.0-75 и резьбой M4-7H для возможной установки гидравлического дросселя				
6	Штуцер M12×1,5 с ниппелем				
7	Штуцер С ½"-А				
8	Штуцер M10×1,5				
9	Коррозионностойкая открытая мембрана со штуцером M20×1,5				
A	Коррозионностойкая открытая мембрана со штуцером M36×1,5				
В	Фланцевое подключением к процессу с резьбой К1/4"				
C	Штуцер M12×1,0 с ниппелем				
D	Штуцер M12×1,25 с ниппелем				
E	Штуцер M22×1,5 с ниппелем				
F	Штуцер M20×1,5 с ниппелем для соединения типа 3 исполнение 1 по ГОСТ 25164 и установленным гидравлическим дросселем				
K	Штуцер G ¼"-А				

L	Штуцер M10×1,0 с ниппелем
M	Штуцер M18×1,5
N	Штуцер G¼"-A DIN3852-Е с уплотнением по DIN 3869
R	Штуцер 1/2"NPT-14
G	Фланцевое подключение (малогабаритный вариант разности давлений)
Н	Малогабаритный вариант преобразователя разности давлений со штуцерами M20×1,5 с ниппелем
Q	Штуцер 1/4"NPT-18
Y	Штуцер M8×1 (конический)
T	Штуцер M14×1,5
Z	Штуцер G без ниппеля по DIN3852 с уплотнением по DIN3869
Д	Штуцер с внутренней резьбой 7/16"-20 UNF-2B по ISO 725:2009
Ж	Штуцер M20x1,5 с ниппелем для соединения типа 3 исполнение 1 по ГОСТ 25164, специсполнение с удлиненной резьбовой частью
П	Штуцер M22x1,5 с ниппелем по ГОСТ 2822
3	Штуцер G1/4-D DIN EN 837-1

Таблица А.9 — Код вида индикации выходного сигнала

Код	Вид индикации выходного сигнала
0	без индикации

Т а б л и ц а А.10 — Код соединителя электрического для соединения с внешней линией связи

Код	Тип соединителя	Примечание		
10	вилка 2РМДТ18Б4Ш5В1В			
13	вилка 2РМГД18Б4Ш5Е2	герметичный		
14	вилка 2РМГД18Б7Ш1Е2	герметичный		
15	вилка 2РМДТ18Б7Ш1В1В			
60	DIN 43650 A	вилка DIN 43650A		
90	Кабель с маркированными	Длина согласовывается при заказе		
70	выводами			
92	Кабель с маркированными	Группа пылевлагозащиты до IP68 по ГОСТ 14254, диапазо		
72	выводами	температур окружающей среды от минус 40 до 80 °C		

Т а б л и ц а A.11 — Код группы пылевлагозащиты по ГОСТ 14254

Код	Обозначение			
0	IP54			
1	IP67			
5	IP65			

Таблица А.12 — Код диапазона напряжений питания

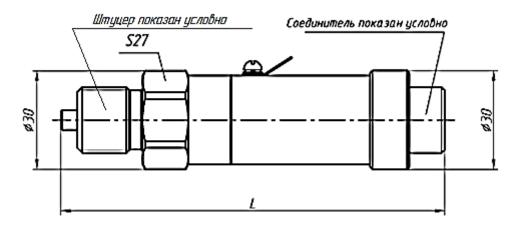
	Код	Диапазон напряжения, В
Ī	1	8–30

Т а б л и ц а А.13 — Код времени установки выходного сигнала после включения питания

Код	Время установки выходного сигнала после включения питания, мс, не более							
0				-				
Примечан преобразовател		_		выходного	сигнала	указывается	только	для

Таблица А.14 — Код конструктивного исполнения

Код	Материал мембраны	Материалы, контактирующие с измеряемой средой	Номер рисунка приложения Б
00	Титановый сплав ВТ-9	Титановый сплав ВТ-9 по	Б.1, Б.2
	по ОСТ 1.90006	ОСТ 1.90006. Сталь 12Х18Н10Т	
20	Титановый сплав ВТ-9	Титановый сплав ВТ-9 по	Б.8
	по ОСТ 1.90006	ОСТ 1.90006. Сталь 12Х18Н10Т	
21	Сталь 36НХТЮ	Сталь 12Х18Н10Т	Б.6, Б.7
31	Сталь 36НХТЮ	Сталь 12Х18Н10Т	Б.6
03	Сталь 36НХТЮ	Сталь 12Х18Н10Т	Б.3, Б.4
04	Сталь 316L	Сталь 316L, сталь 12X18H10T, Viton	Б.1
05	Сталь 316L	Сталь 316L	Б.9,Б.10
14	Сталь 316L	Сталь 316L, Viton	Б.5
34	Сталь 316L	Сталь 316L, сталь 12X18H10T, Viton	Б.8

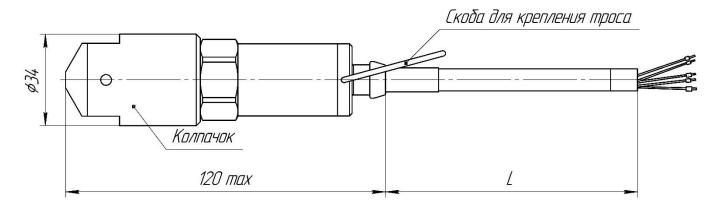

Примечания

- 1 В многодиапазонных преобразователях с автоматическим переключением диапазонов для определения основной погрешности используется ближайшее обозначение значение ВПИ, которое превышает установленное значения давления.
- 2 Символ «П» в коде конструктивного исполнения используется для преобразователей, работающих в контакте с пищевыми продуктами.

Таблица А.15 — Код информации о первичной поверке

Код	Описание				
БП Отгрузка преобразователей с завода-изготовителя без оформления первично поверки (условия договора)					
ЕПА	Отгрузка преобразователей с завода-изготовителя без оформления первичной поверки, «Э» - особые условия поставки				

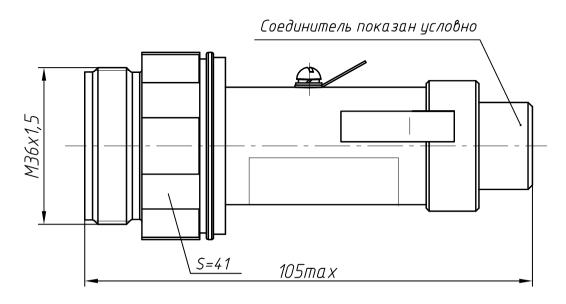
Приложение Б Габаритные чертежи СДВ



Исполнения с кодом электрического соединителя по таблице A.10	Исполнение преобразователей	L, мм, не более
1X, 60	Преобразователи избыточного давления, давления- разрежения исполнения с кодом присоединительного размера 1, 2, 6–8, С–F и кодом конструктивного исполнения K00	105
	Преобразователи избыточного, абсолютного давления с кодом присоединительного размера 2 и кодом конструктивного исполнения К04	120
92	Преобразователи избыточного давления, давленияразрежения исполнения с кодом присоединительного размера 1, 2, 6–8, С–F и кодом конструктивного исполнения К00	112
	Преобразователи избыточного, абсолютного давления с кодом присоединительного размера 2 и кодом конструктивного исполнения К04	127

Примечания

- 1 Размеры для справок.
- 2 Моменты затяжки при установке преобразователей приведены в приложении Д.
- 3 Штуцер и электрический соединитель показаны условно.
- 4 Масса преобразователя не более 0,18 кг.
- 5 Ответная часть соединителя и линия связи не показаны.
- 6 Винт заземления отсутствует.


Рисунок Б.1 — Габаритный чертёж преобразователей избыточного давления, давленияразрежения (с кодом присоединительного размера 1, 2, 6–8, С–F по таблице А.8 и кодом конструктивного исполнения К00 по таблице А.14), избыточного, абсолютного давления (с кодом присоединительного размера 2 по таблице А.8 и кодом конструктивного исполнения К04 по таблице А.14)

Примечания

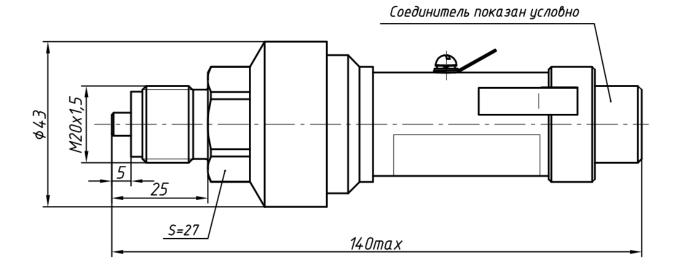

- 1 Для промывки приёмного отверстия снять защитный колпачок.
- 2 Рекомендуется использовать трос для закрепления в рабочем положении, а также подъема и опускания.
- 3 При необходимости использования троса для поднятия и опускания преобразователя, закрепить трос за скобу.
- 4 Длина присоединительного кабеля L в зависимости от исполнения.

Рисунок Б.2 — Габаритный чертёж преобразователей гидростатического давления с кодом присоединительного размера 2 (по таблице A.8) и кодом конструктивного исполнения K00 (по таблице A.14)

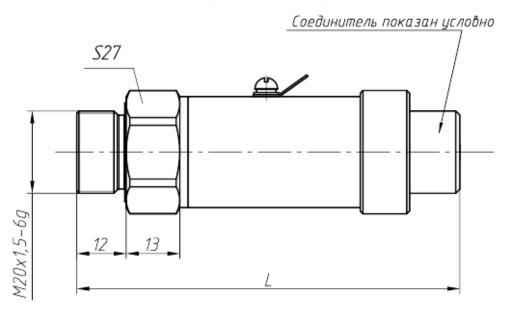
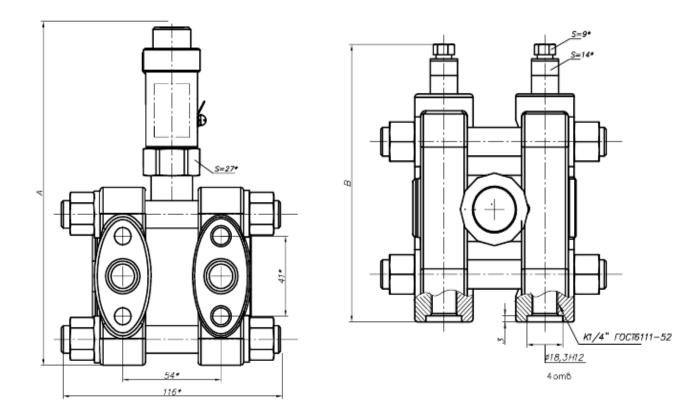

Примечание — Винт заземления отсутствует.

Рисунок Б.3 — Габаритный чертёж преобразователей избыточного давления с кодом присоединительного размера A (по таблице A.8) и кодом конструктивного исполнения K03 (по таблице A.14)

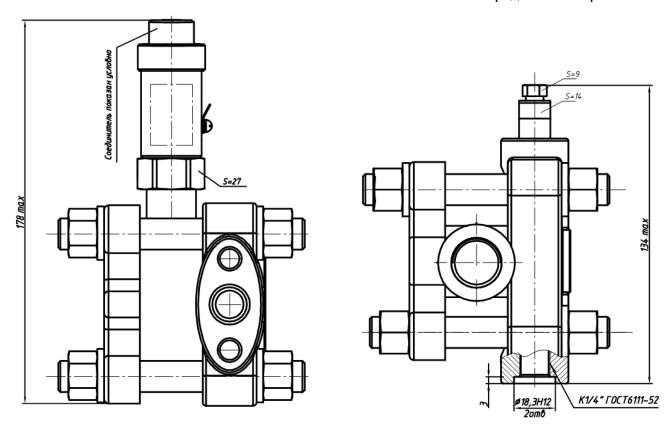
Примечание — Винт заземления отсутствует.


Рисунок Б.4 — Габаритный чертёж преобразователей избыточного давления с кодом присоединительного размера 2 (по таблице A.8) и кодом конструктивного исполнения K03 (по таблице A.14)

Исполнения с кодом электрического соединителя по табл. A.10	L, мм, не более
1X, 60	95
92	102

Примечание — Винт заземления отсутствует.

Рисунок Б.5 — Габаритный чертёж преобразователей избыточного давления, разрежения, давления-разрежения с кодом присоединительного размера 9 (по таблице A.8) и кодом конструктивного исполнения K14 (по таблице A.14)



Максимальный ВПИ, кПа	А, мм, не более	В, мм, не более	Код
			конструктивного
			исполнения
>1,6	178	134	K21
1,6	232	190	K31

Примечания

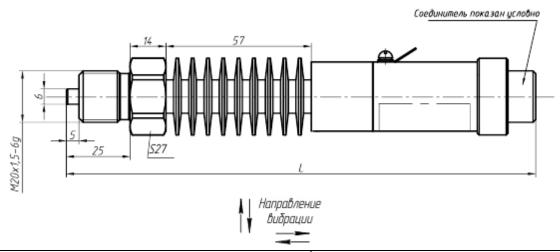
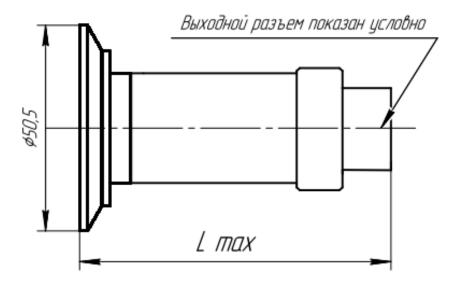

- 1 Размеры для справок.
- 2 Электрический соединитель показан условно.
- 3 Масса преобразователя не более 4,2 кг (исполнение К21) и 9,8 кг (исполнение К31).
- 4 Винт заземления отсутствует.

Рисунок Б.6 — Габаритный чертеж преобразователей разности давлений с кодами конструктивного исполнения К21 и К31 (по таблице А.14)

Примечание — Винт заземления отсутствует.


Рисунок Б.7 — Габаритный чертёж преобразователей абсолютного, давления, разрежения, давления-разрежения с кодом присоединительного размера В (по таблице A.8) и кодом конструктивного исполнения K21 (по таблице A.14)

Код электрического соединителя по таблице А.10	<i>L</i> , мм, не более
1X, 60, 80	185
91, 92	192

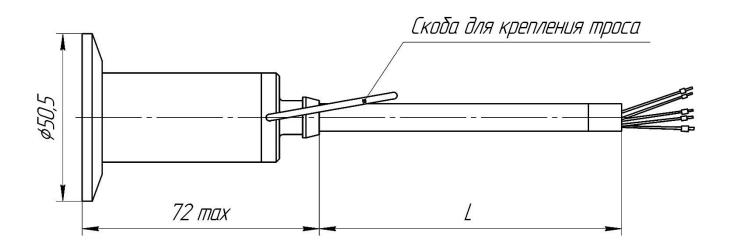
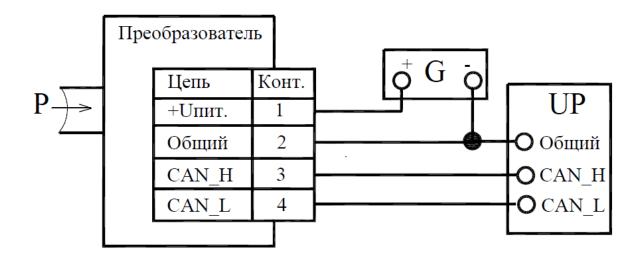

Примечание — Винт заземления отсутствует.

Рисунок Б.8 — Габаритный чертёж преобразователей избыточного давления, разрежения, давления-разрежения исполнения ВТ2 с кодом присоединительного размера 2 (по таблице А.8) и кодом конструктивного исполнения К20, К34 (по таблице А.14)

Код электрического соединителя по таблице А.10	Длина <i>Lmax</i> , мм, не более
1X, 60	80
91	86


Рисунок Б.9 – Габаритный чертёж преобразователей с открытой мембраной избыточного давления с кодом присоединительного размера D50 по таблице A.1, кодом электрического соединителя 1X, 60, 91 по таблице A.10 и кодом конструктивного исполнения K05 по таблице A.14.

Примечание - Длина присоединительного кабеля L в зависимости от заказа.

Рисунок Б.10 — Габаритный чертеж преобразователей гидростатического давления с открытой приемной мембраной, кодом присоединительного размера D50 по таблице A.1 и кодом конструктивного исполнения K05 по таблице A.14.

Приложение В Схема подключения преобразователей СДВ общепромышленного исполнения

Наименование	Обозначение выводов соединителя (вилки)		
цепи	2РМД	DIN 43650	
+Ипит.	1	1	
Общий	2	2	
CAN_H	3	3	
CAN_L	4		

G — источник питания постоянного тока;

Р — измеряемое (задаваемое) избыточное давление;

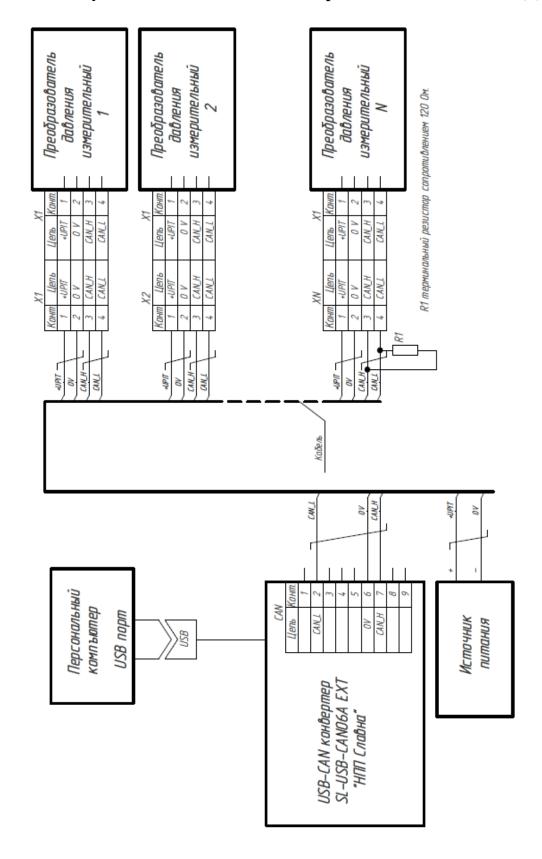

UP — приёмник кодового сигнала.

Рисунок В.1 — Назначение выводов электрического соединителя преобразователя СДВ с выходным сигналом CAN.

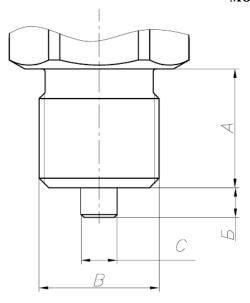
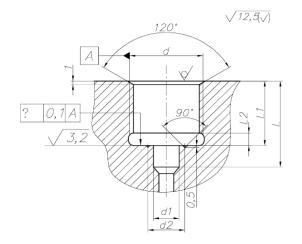
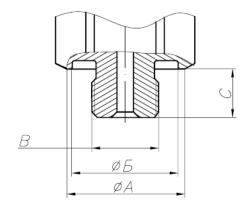

Контакт	Цепь
1	Экран
2	+ Ипит.
3	Общий
4	CAN_H
5	CAN_L

Рисунок В.2 — Назначение выводов электрического соединителя преобразователя СДВ с выходным сигналом CAN и кодом исполнения «T02»


Приложение Г Рекомендуемая схема внешних электрических соединений СДВ

Приложение Д Габаритные размеры штуцеров для подключения к магистрали давления и монтажных гнёзд


В	A	Б	С	Код присоединительной части
M20×1,5	20	5	6	2,3,9,F,H
M12×1,5	12	3	5	6
G½"	21	5	6	7
M12×1	12	3	5	С
M12×1,25	12	3	5	D
M22×1,5	18	3	10	Е
G¹⁄₄″	12	3	5	K
M10×1,0	10	2	3	L

d	d1	d2	L	L1	L2	Код
						присоединит.
						части
M20×1,5	7	12	24	18	3,5	2,3,9,F,H
M12×1,5	6	7,5	14	10	3,5	6
G½"	7	12	24	18	3,5	7
M12×1	6	7,5	14	10	3,5	C
M12×1,25	6	7,5	14	10	3,5	D
M22×1,5	11	16	20	16	3,5	Е
G¹⁄₄"	6	7,5	14	10	3,5	K
M10×1,0	3,5	6,0	13	8	2,5	L

- 1 Размеры в миллиметрах.
- 2 Усилие затягивания при установке на магистраль давления не должно превышать $60 \text{ H} \cdot \text{м}$ для присоединительных размеров $M20 \times 1,5$, $M22 \times 1,5$ и $G\frac{1}{2}$ " и $22 \text{ H} \cdot \text{м}$ для остальных.

Рисунок Д.1 — Габаритные размеры штуцеров и рекомендуемые монтажные гнёзда для установки преобразователей с кодами присоединительной части 2, 3, 6, 7, 9, С–F, H, K, L по таблице А.8

В	A	Б	С	Код присоединительной части
M12×1,0	27	19	8,7	1

Примечания

- 1 Размеры в миллиметрах
- 2 Усилие затягивания при установке на магистраль давления не должно превышать 22 H·м.

Рисунок Д.2 — Габаритные размеры штуцера преобразователей с кодом присоединительной части 1 по таблице A.8

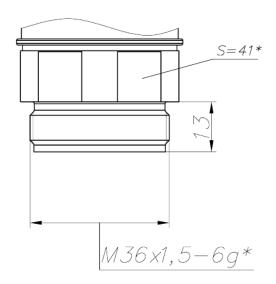


Рисунок Д.3 — Габаритные размеры штуцера преобразователей с кодом присоединительной части А по таблице А.8

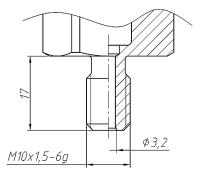
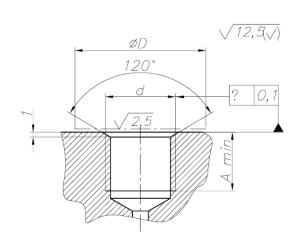
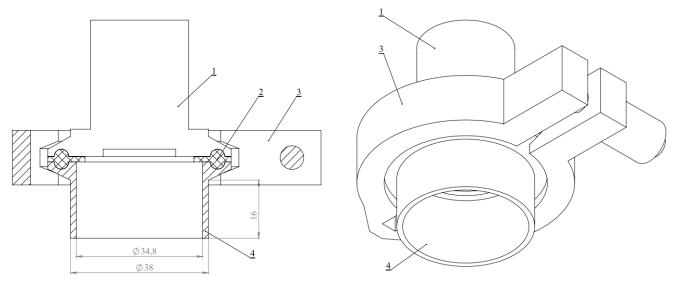




Рисунок Д.4 — Габаритные размеры штуцера преобразователей с кодом присоединительной части 8 по таблице A.8

d	A	D	Код присоединительной части
M12×1,0	9	27	1
M10×1,5	18	24	8
M36×1,5	15	41	A

Рисунок Д.5 — Рекомендуемые монтажные гнезда для преобразователей с кодами присоединительной части 1, 8, А по таблице А.8

Где:

- 1 Корпус преобразователя давления;
- 2 Уплотнительная прокладка;
- 3 Xomyt;
- 4 Переходной патрубок для установки на объект.

Рисунок Γ .5 — Подключение преобразователя с кодом присоединительного размера D50 по таблице A.1 через соединитель «Tri-Clamp2» с прокладкой к объекту

Приложение E Описание протокола CAN Open

В настоящем разделе приведено описание протокола CAN Open, поддерживаемое преобразователем давления СДВ.

Протокол взаимодействия подразумевает наличие нескольких типов сообщений, называемых объектами, описание которых находится в словаре объектов.

Преобразователь давления поддерживает следующие объекты:

- объекты сетевого сервиса (NMT) для управления преобразователями;
- объекты синхронизации (SYNC) для управления выдачей данных;
- объекты данных процесса (PDO) для сообщения результатов измерения;
- сервисные объекты данных (SDO) для проведения настройки.

Обмен информацией по сети осуществляется кадрами. Стандартный кадр данных приведен на рисунке Е.1, при этом его структура не одинакова как для передачи данных преобразователю, так и при ответе преобразователя.

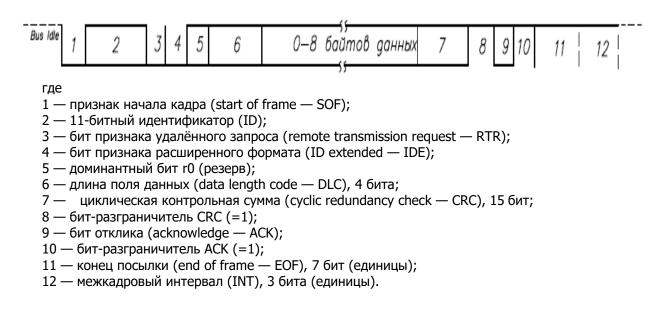


Рисунок Е.1 — Структура стандартного кадра данных CAN 2.0A

Структура поля ID, называемого для протокола CAN Open идентификатором COB и поддерживающего до 127 устройств на линии связи, приведена на рисунке Е.2.

COB-ID										
10	9	8	7	6	5	4	3	2	1	0
Функциональный код Идентификатор узла (Node-ID)										

Рисунок Е.2 — Структура поля идентификатора COB-ID

Распределение COB-ID для предопределенных установок связи приведено в таблице 1.

Продолжение приложения Е

Объект	Функциональный код (двоичный)	Результирующий COB-ID	Индекс соответствующего параметра связи
NMT	0000	0	_
SYNC	0001	80h	1005h
PD01(tx)	0011	181h1FFh	1800h
SDO(tx)	1011	581h5FFh	1200h
SDO(rx)	1100	601h67Fh	1200h

Объекты сетевого сервиса

Структура объектов приведена на рисунке Е.3.

ID	DLC	Байт 0	Байт 1
0	2	CS	Node

где CS — команда NMT;

Node — идентификатор узла (Node = 0 для всех узлов сети).

Рисунок Е.3 — Структура объектов NMT

Поддерживаются следующие команды:

- CS=1 установка режима Operation выдача результатов измерения в соответствии с установками объекта PDO1(tx) (объект 1800h);
- CS=2 установка режима Stop прекращение выдачи результатов измерений;
- CS=80h установка режима PreOperation без выдачи результатов измерений;
- CS=81h, 82h сброс устройства.

Все объекты сетевого сервиса являются неподтверждаемыми, ответа от преобразователей не поступает.

Объект синхронизации

Структура объекта приведена на рисунке Е.4

COB-ID	DLC
80h	0

Рисунок Е.4 — Структура объекта синхронизации

Ответ устройства при получении объекта синхронизации зависит от значения объекта **1800**h с подиндексами 4 и 5 (таблица E.2).

Таблица Е.2 — Значения объекта 1800h

Значение подиндекса 4 объекта 1800h	Значение подиндекса 5 объекта 1800h	Передача данных
N=1240	X	Синхронная, каждые N
		импульсов синхронизации
N=254	k	Асинхронная, каждые k
		миллисекунд

Объект данных процесса

Структура приведена на рисунке Е.5.

COB-ID	DLC	Байт 0	Байт 1	Байт 2	Байт 3	Байт 4	Байт 5	Байт 6	Байт 7
0180h	8	Давление, установленные единицы (Float)					измеря		
+Node		e	сдиниці	ы (Float	.)	C	реды, 🏻	C (Float	t)

Передача данных осуществляется младшим байтом вперёд, например значение давления 15 кПа и температуры 22,5 С будет передано последовательностью от байта 0 к байту 7 в виде кода: 000070410000B441

Рисунок Е.5 — Структура объекта данных процесса

Сервисные объекты данных

Сервисные объекты не поддерживают блочной передачи, обмен осуществляется командами инициализации обмена.

Структура посылки мастера на команду загрузки (записи) приведена на рисунке Е.б.

Запрос мастера								
COB-ID	COB-ID DLC CMD Индекс Подиндекс Данны							
0600h i Nodo	0	Байт0	Байты 1,2	Байт 3	Байты 47			
0600h+Node	ŏ		Unsigned16	Unsigned8				

Рисунок Е.6 — Структура посылки мастера и ответа преобразователя

Двухбайтный индекс объекта передается младшим байтом вперёд.

Команда записи CMD имеет следующий формат:

0х20+А, где:

A=2h — для 4 байтов данных;

A=7h — для 3 байтов данных;

A=Bh — для 2 байтов данных;

A=Fh — для 1 байта данных.

Недействительные байты данных, формат которых не предусмотрен форматом соответствующего объекта, должны обязательно присутствовать в посылке и их значения должны быть равны 0.

<u>Передача данных</u> осуществляется аналогично — <u>младшим байтом вперёд</u>.

Ответ преобразователя на команду загрузки приведен на рисунках Е.7 и Е.8.

COB-ID	DLC	CMD	Индекс	Подиндекс	Данные
0580h+Node	8	60h	<pre>IndL,IndH</pre>	SubInd	0h,0h,0h,0h

Рисунок Е.7 — Структура ответа преобразователя при отсутствии ошибки

COB-ID	DLC	CMD	Индекс		Индекс		Подиндекс	Данные
0580h+Node	8	80h	IndL	IndH	SubInd	Код ошибки		
oscommode)	0011	Inac	111011		(Unsigned32)		

Рисунок Е.8 — Структура ответа преобразователя при наличии ошибки

Перечень кодов ошибок приведен в таблице Е.3.

Таблица Е.3 — Перечень кодов и описание ошибок

Код ошибки	Описание
05040001h	Команда не определена
06010001h	Чтение объекта с признаком «только для записи»
06010002h	Запись объекта с признаком «только для чтения»
06020000h	Объекта с указанным индексом не существует
06070010h	Несоответствие типа данных
06090011h	Указанный подиндекс объекта не существует
06090030h	Превышен диапазон изменения параметра

Команда выгрузки (чтения) преобразователя приведена на рисунке Е.9.

COB-ID	DLC	CMD	Индекс	Подиндекс	Данные
0600h+Node	8	40h	Unsigned16	Unsigned8	0h,0h,0h,0h

Рисунок Е.9 — Структура команды выгрузки (чтения) преобразователя

Ответ преобразователя без ошибок:

COB-ID	DLC	CMD	Индекс	Подиндекс	Данные
0580h+Node	8	CMD	IndL,IndH	SubInd	B0,B1,B2,B3

где CMD=40h+A, значения A приведены в команде загрузки.

Действительным считается только то количество байтов, которое закодировано в байте CMD, недействительные передаются нулями.

Ответ при наличии ошибки передается следующим образом:

COB-ID	DLC	CMD	Индекс		Индекс		Индекс		Индекс		Подиндекс	Данные
0580h+Node	8	80h	IndL	IndH	SubInd	Код ошибки (Unsigned32)						

Коды ошибок приведены в описании команды загрузки таблица Е.З.

Рекомендуемый алгоритм работы

- 1. При установке преобразователя
- 1.1. Выполнить поиск преобразователя для определения его Node-ID Вариант 1:

Выполнить цикл чтения объекта 1000h подиндекс 0h командами:

COB-ID	DLC	CMD	Index	SubInd	Data
600h+N	8	40h	1000h	00h	00000000h

где N изменяется от 01h до 7Fh.

Ответ преобразователя поступит при N = Node-ID

Вариант 2:

Разрешить работу преобразователя командой NMT значением **01h**, переводящей все узлы в состояние Operation:

COB-ID	DCL	Data
0h	2h	0001h

Подать импульс синхронизации:

COB-ID	DCL
80h	0h

В ответ будет получено значение давления в текущих единицах, содержащее в COB-ID Node-ID (заводские установки преобразователя – ответ на каждый синхроимпульс).

- 1.2. Установить требуемый номер узла Node-ID в объекте 2320h; установить требуемую скорость обмена (2321h); установить при необходимости периодичность ответа на синхроимпульсы (1800h, подиндекс 02h) или работу по интервальному таймеру (1800h, подиндекс 05h и 1800h, подиндекс 02h), установить при необходимости режим автозапуска (2330h) значением 01h.
 - 1.3. Сохранить изменения записью в 1010h «save».

1.4. Выполнить сброс питание преобразователя.	устройства	командой	NMT	81h	(82h)	или	выключитн

- 2. В рабочем режиме
- 2.1. При установленном режиме автозапуска преобразователь в зависимости от значения объекта **1800h** подиндекс **02h** работает в синхронном или асинхронном режиме.
- 2.2. При отсутствии автозапуска необходимо перевести его в режим Operation командой NMT значением **01h+Node-ID** (**0001h** для всех узлов). Режим работы описан в 2.1.
- 2.3. При необходимости изменить какие-либо параметры работы в асинхронном режиме необходимо предварительно перевести преобразователь в режим PreOperation командой NMT значением 80h.

Словарь объектов

Перечень объектов, их тип, значения по умолчанию приведены в таблице Е.4.

Таблица Е.4

Индекс	Под- индекс	Описание	Тип	Доступ	Значение по умолчанию	Примечание
1000h	0	Тип устройства	Unsigned32	ro	00020194h	DS404, устройство с аналоговым входом
1001h	0	Регистр ошибок	Unsigned8	ro	_	_
1002h	0	Дата изготовления	Unsigned32	ro		Например 18112014h
						(18 ноября 2014 г.)
1005h	0	COB-ID SYNC	Unsigned32	ro	80h	_
	0	Количество подиндексов	Unsigned8	ro	01h	_
1010h	1	Сохранение параметров	Unsigned32	wo		Сохранение параметров при записи (65766173h)
	0	Количество подиндексов	Unsigned8	ro	01h	_
1011h	1	Восстановление параметров по	Unsigned32	wo		Восстановление заводских настроек
101111		умолчанию				(параметров по умолчанию) записью
						(64616F6Ch)
	0	Количество подиндексов	Unsigned8	ro	04h	_
	1	Код производителя	Unsigned32	ro	C2C8CF20h	_
1018h	2	Код изделия	Unsigned32	ro	D1C4C220h	_
	3	Номер версии	Unsigned32	ro	00000100h	_
	4	Серийный номер	Unsigned32	ro		_
	0	Количество подиндексов	Unsigned8	ro	02h	_
1200h	1	COB-ID Клиент-Сервер(rx)	Unsigned32	ro	600h+Node	_
	2	COB-ID Сервер-Клиент(tx)	Unsigned32	ro	580h+Node	_

Продолжение приложения Е

Индекс	Под- индекс	Описание	Тип	Доступ	Значение по умолчанию	Примечание
	0	Количество подиндексов	Unsigned8	ro	05h	_
	1	COB-ID для PDO	Unsigned32	ro	0180h+Node	_
1800h	2	Тип передачи	Unsigned8	rw	01h	1240 синхронная передача через установленное количество синхроимпульсов 254 — асинхронная передача по интервалу таймера
	3	Резерв				_
	4	Резерв			_	_
	5	Интервальный таймер	Unsigned16	rw	0064h	Интервал таймера в мс, (не более 5000 мс)
	0	Количество подиндексов	Unsigned8	ro	01h	_
1A00h	1		Unsigned32	ro	61300120h	Формат передачи данных по давлению Float32 в установленных единицах
	2		Unsigned32	ro	61300220h	Формат передачи данных по температуре измеряемой среды Float32 в °C
2320h	0	Node-ID	Unsigned8	rw	20h	_
2321h	0	Скорость обмена	Unsigned8	rw	04h	00h — 1000 кбод; 01h — 800 кбод; 02h — 500 кбод; 03h — 250 кбод; 04h — 125 кбод; 05h — 50 кбод; 06h — 20 кбод; 07h — 10 кбод.
2330h	0	Автозапуск	Unsigned8	rw	00h	00h-преобразователь после инициализации находится в режиме PreOperation; 01h- преобразователь переходит в режим Operation
	0	Количество подиндексов	Unsigned8	ro	01h	_
6125h	1	Автоматическая установка «0» преобразователя	Unsigned32	WO	_	Установка нулевого значения выходного сигнала при записи (6F72657Ah) Примечание: Команду установки нуля разрешается выполнять только при нулевом значении давления на входе преобразователя

4

Индекс	Под- индекс	Описание	Тип	Доступ	Значение по умолчанию	Примечание
	0	Количество подиндексов	Unsigned8	ro	01h	_
6126h	1	Коррекция наклона характеристики преобразователя	Float32	wo		Величина коррекции в пределах от 0,977 до 1,023
	0	Количество подиндексов	Unsigned8	ro	01h	_
6127h	1	Коррекция смещения характеристики преобразователя	Float32	wo		Величина коррекции в пределах от минус 0,02 до 0,02 (в долях ВПИ)
	0	Количество подиндексов	Unsigned8	ro	02h	_
6130h	1	Давление	Float32	ro	_	Величина давления
	2	Температура измеряемой среды	Float32	ro	—	Величина температуры
	0	Количество подиндексов	Unsigned8	ro	01h	_
	1	Единицы измерения и множитель		rw	03220000h	03h — десятичный множитель единиц
6131h		единиц измерения давления			(кПа)	измерения. Допустимые значения от минус 6 (FAh) до 06h 22h — единицы измерения
013111						Допустимые значения: 22h — Па; 4Eh — бар; A1h — кгс/см ² ; A2h — мм H ₂ O; A3h — мм Hg
	0	Количество подиндексов	Unsigned8	ro	02h	_
6132h	1	Максимальное количество внутренних диапазонов	Unsigned8	ro	01h	_
	2	Установленный диапазон	Unsigned8	rw	00h	_
	0	Количество подиндексов	Unsigned8	ro	01h	_
6148h	1	Нижний предел измерения	Float32	ro	00000000h	Величина в Па
C1.40h	0	Количество подиндексов	Unsigned8	ro	01h	_
6149h	1	Верхний предел измерения	Float32	ro		Величина в Па
61A0h	0	Количество подиндексов	Unsigned8	ro	01h	_
OTAUL	1	Тип фильтра	Unsigned8	ro	01h	Фильтр скользящего среднего

Индекс	Под- индекс	Описание	Тип	Доступ	Значение по умолчанию	Примечание
	0	Количество подиндексов	Unsigned8	ro	01h	_
	1	Постоянная фильтра	Unsigned8	rw	01h	$V_{\rm n} = V_{\rm n-1} + (I_{\rm n} - V_{\rm n-1})/N$
						где N — постоянная фильтра,
						$V_{\rm n}$ — текущее значение сигнала фильтра,
61A1h						$V_{ m n-1}$ — значение фильтра при предыдущем
						измерении,
						In — значение входного сигнала,
						N = 01 — фильтр отключен
						N = 2127 — фильтр включен

 Π р и м е ч а н и е — Перечень объектов, сохраняемых по командам записи настроек и восстановлении заводских настроек: 1800h, 1A00h, 2320h, 2321h, 2330h, 6131h, 6132, 61A1h.